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Abstract

The exponential window function is widely used in impact hammer testing to reduce leakage errors as
well as to get a nice S/N ratio. The larger the exponential decay rate of the window is, the more effectively
the leakage errors are reduced. But if the decay rate of the exponential window function is too large, the
frequency response function (FRF) is distorted by its side effects. The modal parameters of the system
cannot be exactly identified from the distorted FRF even though modal analysis technique is used.
Therefore, it is a difficult problem to determine a proper exponential decay rate in an impact hammer
testing.
In this paper, the amount of the FRF distortion caused by the exponential window function is

theoretically uncovered, and an unbiased expression of the exponential-windowed FRF is represented.
A new circle fitting method is also proposed so that the modal parameters are directly extracted from the
impulse response spectrum distorted by the exponential window function. The results identified by the
conventional and proposed circle fitting method are compared through numerical examples.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The impulse input like the impact hammer is widely used in vibration test fields to obtain
the frequency response function (FRF) because of its convenience and simplicity for experiments
[1–5]. In most of the conventional analyzers, however, the signals acquired from impact hammer
testing have been dealt with as periodic and stationary although they are obviously neither
periodic nor stationary. Therefore, the FRFs obtained by the impact hammer testing contain
some serious errors, such as finite record-length errors and leakage errors, when the signal data
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for digital signal processing (DSP) is not sufficiently long [6–8]. There have been attempts to
reduce these errors by using various window functions [9–11]. The exponential window function is
generally used to reduce leakage errors and to get a nice S/N ratio of the signals in impact hammer
testing [12]. However, the decay rate of the exponential window function applied to the impulse
response signal causes distortion of the widowed FRF. The damping ratio of the system cannot be
completely recovered from the exponential-windowed FRF although modal analysis techniques
are properly used.
This paper theoretically shows that the exponential window function used in impact hammer

testing makes the FRF distorted even though it helps reduce leakage errors as well as finite record-
length errors. The exact formulation of the exponential-windowed FRF has to be expressed to
calculate the unbiased modal parameters of a dynamic system. The unbiased expression of FRF
with exponential window function is theoretically derived in this paper. A new circle fitting
method using the unbiased formulation is also developed so that the modal parameters can be
directly calculated from the exponential-windowed FRF. Finally, numerical examples of a 1-d.o.f.
model verify the validity and usefulness of the developed circle fitting method.

2. Finite record-length errors in unit impulse response function

The equation of motion of a viscously damped 1-d.o.f. system of Fig. 1 is described as follows:

m .xðtÞ þ c ’xðtÞ þ kxðtÞ ¼ f ðtÞ: ð1Þ

If the force in the right hand side of Eq. (1) is impulse, it can be expressed by the Dirac delta
function

f ðtÞ ¼ F0dðtÞ: ð2Þ

The response of displacement under impulse input of Eq. (2) can be described as [13,14]

xðtÞ ¼ F0hðtÞ ¼ F0
e�zont

mod

sinodt; tX0; ð3Þ
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Fig. 1. Damped 1-d.o.f. vibration model.
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where hðtÞ means unit impulse response function. Since the signal cannot be obtained for an
infinite time period, it should be modified for a record length, TRL: In this case, the Fourier
transformation of the impulse signal can be written as [15]

F ðoÞjTRL
¼

Z
N

�N

f ðtÞe�jot dt ¼ F0

Z TRL

0

dðtÞe�jot dt ¼ F0: ð4Þ

Since the spectrum of impulsive force has constant values over the entire frequency range, it has
no relation to the record length. On the other hand, the Fourier transformation of xðtÞ in Eq. (3)
becomes

X ðoÞjTRL
¼

Z
N

�N

xðtÞe�jot dt ¼ F0

Z TRL

0

e�zont

mod

sinodte�jot dt

¼
F0

k � o2m þ joc
½1� EðoÞjTRL

�; ð5Þ

where

EðoÞjTRL
¼ e�zonTRL ejoTRL

zffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p sinodTRL þ cosodTRL þ j
o
od

sinodTRL

( )
ð6Þ

represents a finite record-length error in this paper. If record length TRL were sufficiently large, the
FRF would be calculated as

HðoÞ ¼ lim
TRL-N

X ðoÞjTRL

FðoÞjTRL

¼
1

k � o2m þ joc
¼

1=k

1� ðo=onÞ
2 þ j2zðo=onÞ

: ð7Þ

This means that the FRF obtained from impact hammer testing would match its exact FRF in the
case of an infinitely long record length. However, a finite record-length error is not actually
avoidable because record length is inevitably finite.

3. FRF distortion caused by exponential window function

The exponential window function is usually applied to impulse response signal in order to
reduce finite record-length errors and leakage errors which take place when the record length is
not sufficiently long. The characteristics of a windowed FRF will be discussed in this section. If an
exponential window function with decay rate s is applied to Eq. (3), we can write

hwðtÞ ¼ e�st e
�zont

mod

sinodt; tX0: ð8Þ

When the time data is acquired for record length TRL; the Fourier transformation of Eq. (8) is
described as

*HwðoÞ
��
TRL

¼
Z TRL

0

e�st e
�zont

mod

sinodt e�jot dt

¼
1=k

1� ðo=onÞ
2 þ 2zðs=onÞ þ ðs=onÞ

2 þ j2ðzþ s=onÞðo=onÞ
½1� EwðoÞjTRL

�; ð9Þ
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where

EwðoÞjTRL
¼ e�ðs=onþzÞonTRL ½ðo=onÞ sinodTRL sino TRL þ ðs=on þ zÞðon=odÞcosodTRL sinoTRL

þ cosodTRL cosoTRL þ jfðo=onÞ sinodTRL cosoTRL

� ðs=on þ zÞðon=od ÞsinodTRL sinoTRL � cosodTRL sinoTRLg�: ð10Þ

The EwðoÞjTRL
given in Eq. (10) represents the finite record-length error. The relation between

the absolute values of EwðonÞjTRL
and the ratio of the exponential decay rate to natural angular

velocity s/on, is shown in Fig. 2. Specifically, Fig. 2(a) shows their relations according to
the changes in the number of the signal’s periods existing in record length fn�TRL , when
the damping ratio z is fixed as 0.01. Fig. 2(b) shows the relation according to the changes of the
damping ratio when the number of the signal’s periods fn � TRL is fixed as 20. From Fig. 2, we can
see that the finite record-length error is inevitably involved in the frequency response spectrum
when the damping ratio of the signal is relatively small or when the record length is not sufficiently
long. The larger the decay rate of the applied window becomes, the smaller the error becomes.
Hence, the error EwðoÞ will become infinitesimal in case that record length is sufficiently long or
the decay rate of the exponential window function is sufficiently large. When the finite record-
length error EwðoÞ is removed by selecting a large decay rate of the exponential window function,
the windowed FRF becomes

%HwðoÞ
��
TRL

¼
1=k

1� ðo=onÞ
2 þ 2zðs=onÞ þ ðs=onÞ

2 þ j2ðzþ s=onÞðo=onÞ
: ð11Þ

Until now it has been known that the decay rate s of the exponential window function affects only
the damping ratio z of the FRF in Eq. (7), and the effect of the decay rate can be removed by the
conventional modal analysis technique [3,13,14]. But Eq. (11) proposed in this paper shows
that the exponential-windowed FRF is different from the exact FRF given in Eq. (7), although the
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Fig. 2. Errors of Eq. (10) according to changes of exponential decay ratio of window function. (a) Fixing damping ratio

and (b) fixing the number of signals within record length.
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effect of decay rate in the imaginary part of the denominator of Eq. (11) is exactly removed by the
modal analysis technique.
The exponential-windowed FRF given in Eq. (9) shows that although the finite record-length

error EwðoÞ is diminished by the large decay rate, the FRF becomes distorted because of the
third and forth term of its denominator. On the contrary, in the case of a small decay rate,
a finite record-length error which is not completely removed makes the FRF incorrect.
Therefore, it is not true that modal parameters can be exactly derived from the exponential-
windowed FRF.
The absolute value of the ratio of the exact FRF given in Eq. (7) to the windowed FRF given in

Eq. (9) is shown in Fig. 3. Specifically, Fig. 3(a) shows the values according to changes of the
number of the signal’s periods existing in record length fn � TRL; when the damping ratio z is fixed
as 0.01. Fig. 3(b) show the values according to changes of the damping ratio when the number of
the signal’s periods fn � TRL is fixed as 20. As shown in Fig. 3, the finite record-length error is
further and further diminished until the decay rate of the exponential window function reaches a
specific value. But when the decay rate is larger than a specific value, the FRF is gradually more
distorted because of the window effect. There are some cases where the exact FRF cannot be
obtained in spite of using any suitable exponential window function. Therefore, it is necessary to
develop a new method by which the exact FRF can be directly estimated from the exponential-
windowed FRF with any decay rate.

4. A new circle fitting method for exponential-windowed FRF

The mobility of the FRF given in Eq. (11) is expressed as

%YðoÞ ¼ jo� %HwðoÞ
��
TRL

¼ Re½ %YðoÞ� þ j Im½ %YðoÞ�; ð12Þ
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Fig. 3. Ratio of peak amplitudes of windowed FRF to exact FRF at natural frequency according to changes of decay

rate of exponential window function. (a) Fixing damping ratio and (b) fixing the number of signals within record length.
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where the real and imaginary parts are given by

Re½ %YðoÞ� ¼
o=kf2ðzþ s=onÞðo=onÞg

f1� ðo=onÞ
2 þ 2zðs=onÞ þ ðs=onÞ

2g2 þ f2ðzþ s=onÞðo=onÞg
2
; ð12aÞ

Im½ %YðoÞ� ¼
o=k 1� ðo=onÞ

2 þ 2zðs=onÞ þ ðs=onÞ
2

� �
f1� ðo=onÞ

2 þ 2zðs=onÞ þ ðs=onÞ
2g2 þ f2ðzþ s=onÞðo=onÞg

2
; ð12bÞ

respectively. The real and imaginary parts in the conventional circle fitting method have simpler
expressions written as

Re½ %YðoÞ� ¼
o=kf2ðzþ s=onÞðo=onÞg

f1� ðo=onÞ
2 þ f2ðzþ s=onÞðo=onÞg

2
;

Im½ %YðoÞ� ¼
o=k 1� ðo=onÞ

2
� �

f1� ðo=onÞ
2 þ f2ðzþ s=onÞðo=onÞg

2
:

Rearranging Eq. (12) gives the equation of the modal circle as

fRe½ %YðoÞ� � cg2 þ Im½ %YðoÞ�2 ¼ c2; ð13Þ

where

c ¼
on=k

4ðzþ s=onÞ
: ð14Þ

The equation of the modal circle can be determined by using the least square estimation to
minimize the sum of errors given by

Sum of errors ¼
X
o

Re½ %YðoÞ� �Re½SðoÞ�
� �2þX

o

Im½ %YðoÞ� � Im½SðoÞ�
� �2

; ð15Þ

where SðoÞis the mobility obtained by experiments such as the impact hammer testing. It is
calculated as follows:

SðoÞ ¼ jo�
DFT ½xðtÞ � e�st�

DFT ½f ðtÞ�
: ð16Þ

The Nyquist plot of a system and its modal circle calculated from Eq. (15) are shown in Fig. 4.
The frequency o0; where the magnitude of mobility has the maximum value, can be obtained by
the simplest interpolation equation as

o0 ¼ oa þ
ya

ya þ yb

ðob � oaÞ: ð17Þ

In Eq. (17), oa and ob represent the frequencies near the peak on the Nyquist plot. A higher order
interpolation technique can be used to get more precise results.
Using both Eq. (12) and Fig. 4, the following equations can be derived:

tan ya ¼
1þ 2zðs=onÞ þ ðs=onÞ

2 � ðoa=onÞ
2

2ðzþ s=onÞðoa=onÞ
X0; ð18Þ
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tan yb ¼
ðob=onÞ

2 � f1þ 2zðs=onÞ þ ðs=onÞ
2g

2ðzþ s=onÞðob=onÞ
X0: ð19Þ

To derive the damping ratio z, the sum of the above equations is presented as

tan ya þ tan yb ¼
f1þ 2zðs=onÞ þ ðs=onÞ

2g þ ðoa=onÞðob=onÞðob=on � oa=onÞ
2ðzþ s=onÞðoa=onÞðob=onÞ

: ð20Þ

If Eq. (20) is rearranged, the damping ratio can be directly calculated by

z ¼
½ob=on � oa=on�½1þ ðs=onÞ

2 þ ððob=onÞðoa=onÞÞ� � 2ðtan ya þ tan ybÞðs=onÞðoa=onÞðob=onÞ
2ðtan ya þ tan ybÞðoa=onÞðob=onÞ � 2½ob=on � oa=on�ðs=onÞ

:

ð21Þ

Using Im½ %Yðo ¼ o0Þ� ¼ 0 as shown in Fig. 4, the following quadratic equation is given:

o2n þ 2szon � o20 þ s2 ¼ 0: ð22Þ

Substituting B of Eq. (21) into Eq. (22), the natural angular frequency onis calculated from

o2n ¼ o20 þ s2 �
sðo20 þ oaobÞðob � oaÞ
ðtan ya þ tan ybÞoaob

: ð23Þ

The natural angular frequency in the conventional circle fitting method has the following form:

o2n ¼ o20;

which is much simpler than Eq. (23). The modal stiffness k can be calculated by the following
equation rearranged from Eq. (14):

k ¼
on

4zc
: ð24Þ

After the modal parameters are calculated by the new circle fitting method developed in this
paper, an improved FRF is obtained by applying them to Eq. (7).
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Fig. 4. Point data from Nyquist plot and the modal circle of mobility with exponential window function.
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5. Numerical example

In order to discover the relation between finite record-length errors and decay rate of the
exponential window function, a 1-d.o.f. damped model shown in Fig. 1 is simulated as shown.
Using the Runge–Kutta method, the response of the displacement to impulsive excitation f ðtÞ is
calculated for the system which has mass m of 3.0 kg, spring constant k of 47,374.1N/m, damping
coefficient c of 11.3N s/m, natural frequency fn of 20Hz, and damping ratio z of 0.015. The
impulse force and its displacement response are plotted in Fig. 5. The modal parameters are
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Fig. 5. Impulse and response signals of 1-d.o.f. vibration model. (a) Impulse force and (b) displacement response.

Fig. 6. Comparison of natural frequency estimated by the conventional and proposed circle fitting methods.
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calculated by the conventional circle fitting method and by the new method proposed in this
paper, and compared in Figs. 6–8. The term ‘without leakage’ in these figures represents that the
record length exactly matches to the period time of the signal. The term ‘with leakage’ represents
that the record length does not match the period. These figures show that the proposed circle
fitting method estimates the natural frequency and damping ratio of the numerical model well
regardless of the decay rate of the exponential window function applied to the signal. The FRFs
obtained by the conventional and by the proposed circle fitting methods in the case of s=on ¼ 0:2
are compared in Fig. 9. While the FRF obtained by the conventional method differs from the
exact FRF, the FRF by the proposed method agrees with the exact FRF.
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Fig. 7. Comparison of damping ratio estimated by the conventional and proposed circle fitting methods.

Fig. 8. Comparison of stiffness of the model estimated by the conventional and proposed circle fitting methods.

(a) Without leakage and (b) with leakage.
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6. Conclusions

1. The finite record-length error in the impulse response spectrum is formulated theoretically.
2. Although the exponential window function reduces finite record-length errors as well as
leakage errors, it causes other kinds of errors which distort the windowed FRF.

3. If the decay rate of the exponential window function is relatively small, the finite record-length
errors are not effectively reduced. In the case of a large decay rate, the windowed FRF is
distorted again by the side effects of the exponential window function.

4. A new circle fitting method is developed to estimate the correct modal parameters directly from
the exponential-windowed FRF.

5. The proposed method is validated through numerical examples, and the effectiveness of the
method is verified.
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